首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2176篇
  免费   46篇
  国内免费   77篇
电工技术   11篇
综合类   30篇
化学工业   884篇
金属工艺   166篇
机械仪表   48篇
建筑科学   92篇
矿业工程   2篇
能源动力   157篇
轻工业   101篇
水利工程   5篇
石油天然气   6篇
武器工业   4篇
无线电   121篇
一般工业技术   388篇
冶金工业   73篇
原子能技术   21篇
自动化技术   190篇
  2024年   1篇
  2023年   23篇
  2022年   44篇
  2021年   51篇
  2020年   48篇
  2019年   43篇
  2018年   46篇
  2017年   58篇
  2016年   88篇
  2015年   65篇
  2014年   111篇
  2013年   200篇
  2012年   94篇
  2011年   197篇
  2010年   119篇
  2009年   156篇
  2008年   148篇
  2007年   135篇
  2006年   120篇
  2005年   110篇
  2004年   78篇
  2003年   71篇
  2002年   51篇
  2001年   26篇
  2000年   25篇
  1999年   36篇
  1998年   50篇
  1997年   23篇
  1996年   15篇
  1995年   13篇
  1994年   17篇
  1993年   9篇
  1992年   4篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
排序方式: 共有2299条查询结果,搜索用时 15 毫秒
11.
Exploring efficient and durable non-precious metal catalysts for oxygen reduction reaction (ORR) has long been pursued in the field of metal-air batteries, fuel cells, and solar cells. Rational design and controllable synthesis of desirable catalysts are still a great challenge. In this work, a novel approach is developed to tune the morphologies and structures of Fe–N–C catalysts in combination with the dual nitrogen-containing carbon precursors and the gas-foaming agent. The tailored Fe–N1/N2–C-A catalyst presents gauze-like porous nanosheets with uniformly dispersed tiny nanoparticles. Such architectures exhibit abundant Fe-Nx active sites and high-exposure surfaces. The Fe–N1/N2–C-A catalyst shows extremely high half-wave potential (E1/2, 0.916 V vs. RHE) and large limiting current density (6.3 mA cm−2), far beyond 20 wt% Pt/C catalyst for ORR. This work provides a facile morphological and structural regulation to increase the number and exposure of Fe-Nx active sites.  相似文献   
12.
《Ceramics International》2020,46(8):11499-11507
In this study, NiCo2O4 with different morphologies were fabricated using carriers by homogeneous coprecipitation combined with a sintering method. The phase and microstructure were characterized by XRD, SEM, EDS, TEM and BET, and the catalytic performances were investigated by NaBH4 hydrolysis experiments. These studies revealed that the deposition morphology of NiCo2O4 can be adjusted by using different kinds of carrier templates, and the supported NiCo2O4 samples presented the pine-needle-like, network-like, ball-cactus-like and dandelion-like morphologies respectively. The optimal catalytic activity, durability and stability make the network-like NiCo2O4 an appropriate catalyst for hydrogen generation of NaBH4 hydrolysis. It was found that the network-like NiCo2O4 is the most reusable and durable catalyst for ten consecutive cycles and 100% hydrogen generation conversion rate without obvious decrease among these morphologies.  相似文献   
13.
《Ceramics International》2020,46(4):4813-4823
Micro-cracks generated by hard body scratch are a major cause of strength decrease for silicate glass. The influence of normal scratch load on the cracking patterns and flexural strength of annealed glass (AG) and chemically strengthened glass (CSG) were studied. With the increase of the normal load, the load capacity of scratched AG specimens decreased to about 40 MPa at 20gf immediately. However, the residual strength of CSG decreased to a steady value of 145 MPa as the scratch load increased to 500gf. Then the effect of hydrofluoric acid (HF) etching on the surface morphology and mechanical properties of the 500gf scratched glass were investigated. After 8min (for CSG) and 16 min (for AG) acid treatment, the flexural strength of CSG and AG increased to a considerable value of 900 MPa, which is 3.6 and 5.5 times higher than the flexural strength of undamaged specimens. Microscopic observations show that the blunting and eliminating of median cracks as well as the formation of new surfaces are the main causes of strength enhancement.  相似文献   
14.
Polymers play an important role in the advancement of materials for use in cutting-edge applications. A direct consequence of an increased demand for more sophisticated materials has been a drive toward developing polymers that exhibit a higher level of structural control, especially in terms of the number and type of functionalities provided within the polymer framework. A family of polymers that meets such a challenge is based on the readily available AB2 monomer 2,2-bismethylolpropionic acid (bis-MPA) building block. Due to the ease with which the monomers can be synthesized, an array of multifunctional polymers have been produced including monodisperse dendrimers and dendrons and well-defined linear polymers as well as linear-dendritic hybridizations. This review outlines the evolution of the synthetic strategies for developing novel polymeric architectures based on bis-MPA and their assessment in both solution and substrate-based innovative applications.  相似文献   
15.
《Ceramics International》2020,46(8):11689-11697
In this research, vapor phase transport (VPT) was introduced as a facile, inexpensive method to produce ZnO micro/nanostructures from various Zn sources such as pure Zn and alpha brass pre-alloyed powders (Cu–20Zn and Cu–28Zn) at different processing temperatures of 930 °C–1050 °C. Simultaneous thermal analysis (STA) was carried out to investigate Zn evaporation and ZnO micro/nanostructure formation. STA results showed an exothermic peck at 711 °C and 728 °C for Cu–20Zn and Cu–28Zn, respectively, due to oxidation of the evaporated Zn element and formation of ZnO micro/nanostructures. X-ray diffraction results showed that high purity ZnO micro/nanostructures were successfully synthesized via VPT process and the crystallite size was increased from ~60 nm to ~100 nm with increasing processing temperature. Field emission scanning electron microscopy observations showed morphology (e.g. rods, column, tetrapods, and combs) and size of the synthesized micro/nanostructures were dependent on the Zn sources and processing temperature, in which average diameter of the synthesized ZnO structures was increased with increasing the processing temperature. The smallest (98 nm) and largest (603 nm) average diameters of synthesized ZnO micro/nanostructures were attained from the pure Zn and Cu–28Zn brass powders at 930 °C and 1050 °C, respectively.  相似文献   
16.
Ceramic materials have tremendous demand in manufacturing sectors. However, poor machinability impedes their widespread applications on an industrial scale. BK-7 falls in the same category and is normally processed by ultrasonic machining. But nowadays rotary ultrasonic machining is overtaking the ultrasonic machining for processing difficult to cut materials because of its superlative material removal mechanism. Current study aims to improve the surface quality of BK7 by studying the effect of input factors on surface roughness during rotary ultrasonic machining. Response surface methodology has been used to observe the effect of input variables ― spindle speed, feed rate and ultrasonic power ― on surface roughness (SR). Thereafter, central composite design was employed to estimate the regression coefficients of quadratic model for surface roughness. Fitness of developed quadratic model was checked by ANOVA test, which also revealed that all the model terms of input factors were significant except feed and speed interaction. Feed has the maximum impact over surface roughness descended by moderate impact of power and spindle speed. The study was further reinforced on observing the surface integrity of processed surfaces using scanning electron microscopic images. Mixed flow of material was observed to occur at lower feed rate and higher levels of rpm and ultrasonic power.  相似文献   
17.
Pure BiFeO3 samples were synthesized at low temperatures using hydrothermal/solvothermal method. The synthesis temperature of pure BiFeO3 is continuously lowered while maintaining a high yield to lay the foundation for future industrialization. The morphological changes in BiFeO3 synthesized at different temperatures were analyzed and the growth patterns discovered. The essential factor that affects the morphological changes was analyzed and reasonable explanations for these changes are given. The effect of organic solvent on sample morphology was observed. BiFeO3 samples with better morphology were prepared by adding a proper surfactant. The synthesized pure BiFeO3 phase reveals room temperature ferromagnetism, and the magnetism decreases as the particle size decreases.  相似文献   
18.
Porous mullite ceramics with different crystal shapes of mullite are fabricated by in-situ reaction with middle-grade kyanite as raw material, Al(OH)3, γ-Al2O3, ρ-Al2O3 and α-Al2O3 as alumina sources. Effects of Al2O3 crystal types on morphology evolution and formation mechanisms of mullite, and properties of porous ceramics are investigated. Results show that mullite in the sample with Al(OH)3 mainly shows acicular morphology, because its (001) plane has the minimum interplanar crystal spacing and maximal attachment energy, it grows fast along [001] direction by screw dislocation mechanism. With a successive slowdown in reactivities of Al(OH)3, γ-Al2O3, ρ-Al2O3 and α-Al2O3, the amount and aspect ratio of mullite reduce, its growth mechanism gradually transforms into two-dimensional nucleation. Acicular mullite not only reinforces samples, but makes effective pore sizes smaller, which enable the sample with Al(OH)3 to present low bulk density, high apparent porosity and linear changes, small average pore size and good mechanical strength.  相似文献   
19.
《Ceramics International》2020,46(5):5773-5778
In this research work, the effects of silicon carbide (SiC) as the most important reinforcement phase on the densification percentage and mechanical characteristics of zirconium diboride (ZrB2)-matrix composites were studied. In this way, a monolithic ZrB2 ceramic (as the baseline) and three ZrB2 matrix specimens each of which contains 25 vol% SiC as reinforcement in various morphologies (SiC particulates, SiC whiskers, and a mixture of SiC particulates/SiC whiskers), have been processed through spark plasma sintering (SPS) technology. The sintering parameters were 1900 °C as sintering temperature, 7 min as the dwell time, and 40 MPa as external pressure in vacuum conditions. After spark plasma sintering, a relative density of ~96% was obtained (using the Archimedes principles and mixture rule for evaluation of relative density) for the unreinforced ZrB2 specimen, but the porosity of composites containing SiC approached zero. Also, the assessment of sintered materials mechanical properties has shown that the existence of silicon carbide in ZrB2 matrix ceramics results in fracture toughness and microhardness improvement, compared to those measured for the monolithic one. The simultaneous addition of silicon carbide particulates (SiCp) and whiskers (SiCw) showed a synergistic effect on the enhancement of mechanical performance of ZrB2-based composites.  相似文献   
20.
Three-dimensional palladium nanoflowers (PdNF) composed of ultrathin Pd nanosheets had been synthesized by a solvothermal approach in our previous work. Here, the effects of preparation conditions on the morphology and electrochemical performance of palladium nanostructures were investigated. The explored conditions are as follows: the ratio of reducing agent to capping agent, the concentration of PdCl2 precursor, the amount of HCl (used for PdCl2 dissolution), the reaction temperature and time. Only when these conditions are strictly controlled, the obtained Pd material displays a uniformly nanoflower-like morphology, otherwise the Pd samples with nanoparticles or incomplete flowers can only be obtained. Then, the relationship between the morphology of Pd and its electrocatalytic activity was further studied. The results indicate that the Pd with perfect nanoflowers morphology possesses superior activity for formic acid electro-oxidation, while the Pd with incomplete flowers and ordinary (or irregular) particle morphology shows moderate and inferior activity. Therefore, the morphology-dependent electrocatalytic activity has been demonstrated in this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号